Higgs Properties and Fourth Generation Leptons Koji Ishiwata (Caltech) In collaboration with Mark B. Wise Based on arXiv:1107.1490 - 1. Introduction - 2. The model - 3. Higgs production and decay - 4. Higgs mass bounds - 5. Conclusion SUSY2011, August 30, 2011 ## 1. Introduction Standard model (SM) is a nice model framework which well explains phenomena in particle physics so far Quarks and leptons have a structure called generation In SM, the number of generation is three; however, there is no guiding principle to predict it # Fourth generation is a possible extension; it is phenomenologically acceptable - It is not excluded by electroweak precision measurement [Kribs,Plehn,Spannowsky,Tait '07] - Direct search gives mass bounds for fourth generations: | Quark | Lepton | = | |-------------------------------------|---------------------------------------|----------------| | $m_{u',d'} \gtrsim 330 \text{ GeV}$ | $m_{e'} \gtrsim 100 \text{ GeV}$ | - | | | $m_{\nu'} \gtrsim 45(90) \text{ GeV}$ | [CDF '09, PDG] | (for stable (unstable) case) Due to those mass bound, $4^{\rm th}$ generation should be heavy; so their Yukawa couplings are larger than O(1) when we consider chiral $4^{\rm th}$ generation - Such large Yukawa couplings, especially for quarks, have Landau poles - In phenomenology, Higgs production rate is significantly enhanced by 4th generation loop, compared to its SM-value However, the situation changes when one considers *vector*-like 4th generation (chiral 4th generation plus its "mirror") [Perez,Wise '11] $$\begin{aligned} Q'_L &= \left(\begin{array}{c} u'_L \\ d'_L \end{array} \right) \quad u'_R \quad d'_R \\ L'_L &= \left(\begin{array}{c} \nu'_L \\ e'_L \end{array} \right) \quad \nu'_R \quad e'_R \\ \end{aligned} \qquad \begin{aligned} Q''_R &= \left(\begin{array}{c} u''_R \\ d''_R \end{array} \right) \quad u''_L \quad d''_L \\ E''_R &= \left(\begin{array}{c} \nu''_R \\ e''_R \end{array} \right) \quad \nu''_L \quad e''_L \end{aligned}$$ Chiral 4th generation $$\begin{aligned} \text{Mirror generation} \end{aligned}$$ In such a model, there exist bare mass terms for the 4th generations, $$\Delta \mathcal{L}_q = -M_Q \bar{Q}_L' Q_R'' - M_U \bar{u}_R' u_L'' - M_D \bar{d}_R' d_L'' + \cdots$$ Then, 4th generation quark masses can be large without considering large Yukawa - 4th generation quark Yukawa couplings don't have Landau poles - They are expected to have little effect on Higgs production rate For lepton sector, if we assume a U(1) symmetry, bare mass terms for 4th generation leptons are forbidden, e.g., $U(1)_L$ (see later) [Perez, Wise '10; Dulaney, Perez, Wise '10] $$\Delta \mathcal{L}_l = -h_E' \bar{L}_L' H e_R' - h_E'' \bar{L}_R'' H e_L'' + \cdots$$ H: Higgs doublet # We consider vector-like 4th generation scenario where - 4th generation quarks have bare masses - 4th generation leptons get their masses from weak symmetry breaking ## In the framework, we study - Higgs properties, especially focusing on its production and decay rates at the LHC - Impact of 4th generation on Higgs potential ## **Outline** - 1. Introduction - 2. The model - 3. Higgs production and decay - 4. Higgs mass bounds - 5. Conclusion ## 2. The model We consider a model with a 4th generation fermion ("primed") and its mirror ("double primed") in addition to SM particles Chiral 4th generation $$Q'_{L} = \begin{pmatrix} u'_{L} \\ d'_{L} \end{pmatrix} \quad u'_{R} \quad d'_{R} \qquad \qquad Q''_{R} = \begin{pmatrix} u''_{R} \\ d''_{R} \end{pmatrix} \quad u''_{L} \quad d''_{L}$$ $$L'_{L} = \begin{pmatrix} \nu'_{L} \\ e'_{L} \end{pmatrix} \quad \nu'_{R} \quad e'_{R} \qquad \qquad L''_{R} = \begin{pmatrix} \nu''_{R} \\ e''_{R} \end{pmatrix} \qquad \nu''_{L} \quad e''_{L}$$ SU(2) doublet singlet doublet singlet $U(1)_Y$ Same as the existing generations in SM Then, new gauge invariant terms are introduced in Lagrangian; Here we assume a U(1) symmetry in lepton sector to forbid bare mass terms One of the examples is gauged baryon&lepton number In SM, baryon&lepton number are conserved; so one can consider SM as effective theory of a model where baryon&lepton number are gauged and spontaneously break at very high energy [Foot,Joshi,Lew '89] Here in such a framework, we consider seesaw scenario for ordinary generation neutrinos in lepton sector # For seesaw scenario, we consider a scalar with lepton number 2, which breaks $U(1)_{\cal L}$ - We can introduce the terms to create heavy Majorana neutrino masses for ordinary generations - The terms which create bare mass terms for 4th generation leptons are forbidden [Perez,Wise '10] $$a_{\nu}S_{L}^{*}N_{R}N_{R} + \text{h.c}$$ $$L = -2$$ $$U(1)_{L}$$ $$M_{\nu}N_{R}N_{R} + \text{h.c}$$ $$\langle S_{L} \rangle \neq 0$$ $$S_L \bar{e}_R'' e_L' + \text{h.c.}$$ (forbidden) S_L : scalar, which breaks $U(1)_L$ # So the additional Lagrangian we consider is (again), $$\Delta \mathcal{L}_{q} = -M_{Q}\bar{Q}'_{L}Q''_{R} - M_{U}\bar{u}'_{R}u''_{L} - M_{D}\bar{d}'_{R}d''_{L}$$ $$-h'_{U}\bar{Q}'_{L}\epsilon H^{*}u'_{R} - h''_{U}\bar{Q}''_{R}\epsilon H^{*}u''_{L}$$ $$-h'_{D}\bar{Q}'_{L}Hd'_{R} - h''_{D}\bar{Q}''_{R}Hd''_{L} + \text{h.c.}$$ $$\Delta \mathcal{L}_l = -h'_E \bar{L}'_L H e'_R - h''_E \bar{L}''_R H e''_L$$ $$-h_N \bar{L}'_L \epsilon H^* \nu'_R - h''_N \bar{L}''_R \epsilon H^* \nu''_L + \text{h.c.}$$ # 3. Higgs production and decay # **Higgs production** Higgs production rate is dominated by gluon fusion process at the LHC In our model, 4th generation quarks give new contributions in addition to top As I mentioned in the Introduction, 4th generation quarks have bare masses in our model so they decouple in low energy effective theory when their masses are large ### Numerical results Higgs production rate quickly approaches its SM-value cf. in chiral 4th generation scenario, the ratio is ~ 9 In chiral 4th generation scenario, $120~{\rm GeV} \le m_h \le 600~{\rm GeV}$ is excluded by LHC due to the enhancement of the Higgs production rate; this exclusion is invalid in our case [Talk given by CMS collaboration at EPS '11] # Higgs decay The extra generation makes changes in the following three decay processes in Higgs decay; $h \to \gamma \gamma, \ \gamma Z$ and gg Here, we already know that 4th generation quarks decouple rapidly; so we neglect the effect of 4th generation quarks for simplicity in the following calculation #### Numerical results (i) $$h \rightarrow \gamma \gamma$$ - The decay rate turns out to be 30-40% of its SM value - The dependence of the new charged lepton masses on this result is weak $m_E'(m_E'')$: Chiral (mirror) 4th generation charged lepton mass #### c.f., The decay rate: $$\Gamma_{h \to \gamma \gamma} \propto \left| \frac{4}{3} I(r_t) + \underline{I(r_{E'})} + I(r_{E''}) + K(r_W) \right|^2$$ Fermion loops and ${\cal W}$ boson loop interfere destructively $$r_X = m_h^2/4m_X^2$$ for particle X $I(x), K(x)$: Analytic function (ii) $$h \rightarrow \gamma Z$$ The decay rate is almost same as its SM-value (iii) $$h \rightarrow gg$$ The decay rate is unchanged since 4th generation quarks decouple ## Branching ratios $$m_E' = m_E'' = 100 \; \mathrm{GeV}$$ $m_N' = m_N'' = 100 \; \mathrm{GeV}$ using HDECAY package [Djouadi,Malinowski, Spira'98] - $m_h < 200~{ m GeV}$: Branching ratios are very similar to those in SM except for $h \to \gamma \gamma$ - $m_h > 200~{\rm GeV}$: Branching ratios for $h \to WW, ZZ$ are reduced to ~70% of its SM-value due to the appearance of new decay modes, $h \to e'^+ e'^-$, etc. $$m'_E = m''_E = 100 \text{ GeV}$$ $m'_N = m''_N = 70 \text{ GeV}$ When the neutral 4th generation leptons are lighter than gauge bosons, the reduction of branching ratios for $h \to WW, ZZ$ are much drastic; the branching ratios turn out to be ~30% of its SM-value around $m_h = 150~{\rm GeV}$ - Higgs mass of $200\text{-}400~\mathrm{GeV}$ exclusion is partially invalid because WW, ZZ modes are reduced to ~70% of its SM-values - 145-200 GeV exclusion may also be invalid when new neutral lepton are lighter than gauge bosons # 4. Higgs mass bounds As mentioned in Introduction, 4th generation *quarks* don't have any Landau poles; however, 4th generation *leptons* may have So 4th generation lepton Yukawa couplings may affect Higgs potential, $$V^{H} = -\mu_{H}^{2}|H|^{2} + \lambda|H|^{4}$$ In SM, Higgs quartic coupling could be divergent or get negative at a certain scale (which is interpreted as a cutoff of theory) depending on its value at weak scale [Cabbie,Maiani,Parisi,Petronzi '79;Beg,Panagiotakopoulos,Sirloin '84;Lindner '86;Altarelli,Isidori '94;Casas,Espinosa,Quiros 94';Hambye,Riesselmann '96] This fact is seen in the renormalization group equation (RGR) for λ , $$16\pi^2 \mu \frac{\partial \lambda}{\partial \mu} = 24\lambda^2 + 12\lambda y_t^2 - 6y_t^4$$ The upper and lower bound for Higgs mass are obtained for a fixed cutoff # We have performed the same analysis in our model to get Higgs mass bounds First we solve RGEs for Yukawas, $$16\pi^{2}\mu \frac{\partial h_{E}}{\partial \mu} = \frac{7}{2}h_{E}^{3} + h_{E}\left(3y_{t}^{2} + \frac{1}{2}h_{N}^{2}\right) - h_{E}\left(\frac{9}{4}g_{2}^{2} + \frac{15}{4}g_{1}^{2}\right),$$ $$16\pi^{2}\mu \frac{\partial h_{N}}{\partial \mu} = \frac{7}{2}h_{N}^{3} + h_{N}\left(3y_{t}^{2} + \frac{1}{2}h_{E}^{2}\right) - h_{N}\left(\frac{9}{4}g_{2}^{2} + \frac{3}{4}g_{1}^{2}\right),$$ $$16\pi^{2}\mu \frac{\partial y_{t}}{\partial \mu} = \frac{9}{2}y_{t}^{3} + y_{t}\left(2h_{E}^{2} + 2h_{N}^{2}\right) - y_{t}\left(8g_{3}^{2} + \frac{9}{4}g_{2}^{2} + \frac{17}{12}g_{1}^{2}\right)$$ Here we have assumed $h_E' = h_E'' \equiv h_E, h_N' = h_N'' \equiv h_N$ for simplicity ## After solving those Eqs, we solve the RGE for λ : $$16\pi^{2}\mu \frac{\partial \lambda}{\partial \mu} = 24\lambda^{2} + 4\lambda \left[3y_{t}^{2} + 2(h_{E}^{2} + h_{N}^{2})\right] - 2\left[3y_{t}^{4} + 2(h_{E}^{4} + h_{N}^{4})\right]$$ $$-3\lambda(3g_{2}^{2} + g_{1}^{2}) + \frac{3}{8}\left[2g_{2}^{4} + (g_{2}^{2} + g_{1}^{2})^{2}\right]$$ ### Numerical results - No Landau pole for 4th generation Yukawa and top Yukawa couplings up to Planck scale - Higgs mass bounds get more strict When the masses of 4th generation leptons are larger, their Yukawa couplings have Landau poles As a consequence, constraint for Higgs mass becomes more stringent ## 5. Conclusion We have considered vector-like 4th generation where new leptons get their mass by weak symmetry breaking but new quarks do not In the framework, we have studied their impact on Higgs properties and found that - Higgs decay rate for $h \to \gamma \gamma$ is reduced to 30-40% of its SM-value, while Higgs production rate is the same as in SM - Higgs mass bounds turn out to be more stringent # **Higgs-quark interaction** $$\mathcal{L}_{\text{Higgs}}^{q} = -\frac{\mu_{U_{1}}}{v} h \bar{U}_{1} U_{1} - \frac{\mu_{U_{2}}}{v} h \bar{U}_{2} U_{2}$$ $$-\frac{\mu_{D_{1}}}{v} h \bar{D}_{1} D_{1} - \frac{\mu_{D_{2}}}{v} h \bar{D}_{2} D_{2} - \frac{m_{t}}{v} h \bar{t} t$$ U_i, D_i : mass eigenstate # Then, cross section for gluon fusion is given by $$\frac{\sigma_{gg \to h}}{\sigma_{gg \to h}^{SM}} = \left| 1 + \sum_{i=1,2} \left[\frac{\mu_{U_i}}{M_{U_i}} I\left(r_{U_i}\right) + \frac{\mu_{D_i}}{M_{D_i}} I\left(r_{D_i}\right) \right] / I(r_t) \right|^2$$ $$r_t = m_h^2 / 4m_t^2$$ $$r_{U_i,D_i} = m_h^2 / 4M_{U_i,D_i}^2$$ I(x): an analytic function ## **Higgs-lepton interaction** $$\mathcal{L}_{\mathrm{Higgs}}^{l} = -\frac{m_E'}{v} h \bar{e}' e' - \frac{m_E''}{v} h \bar{e}'' e''$$ $$-\frac{m_N'}{v} h \bar{\nu}' \nu' - \frac{m_N''}{v} h \bar{\nu}'' \nu''$$ $$e', e'', \nu', \nu'' \; : \mathsf{Dirac particles}$$ $$m_E' = h_E' v / \sqrt{2}, m_E'' = h_E'' v / \sqrt{2}, \; \mathsf{etc.}$$ # Higgs decay rate | $m_h \; (\mathrm{GeV})$ | $\mathrm{Br/Br^{SM}}(WW)$ | $\mathrm{Br/Br^{SM}}(ZZ)$ | _ | |-------------------------|---------------------------|---------------------------|----------------------------------| | 150 | 100% | 100% | _ | | 200 | 100% | 100% | | | 300 | 71% | 71% | | | 350 | 75% | 76% | $n_E' = m_E'' = 100 \text{ GeV}$ | | 400 | 80% | 81% r | $n_N' = m_N'' = 100 \text{ GeV}$ | | 450 | 83% | 84% | _ | | $\overline{m_h \; (\text{GeV})}$ | $\mathrm{Br/Br^{SM}}(WW)$ | $\mathrm{Br/Br^{SM}}(ZZ)$ | = | |----------------------------------|---------------------------|---------------------------|----------------------------------| | 150 | 27% | 28% | _ | | 200 | 74% | 75% | | | 300 | 73% | 74% | | | 350 | 78% | 79% | | | 400 | 83% | ()4/() | $n'_E = m''_E = 100 \text{ GeV}$ | | 450 | 86% | 87% <i>m</i> | $n_N' = m_N'' = 70 \text{ GeV}$ | $$m_E' = m_E'' = m_N' = m_N'' \equiv m_L$$ #### **CKM** matrix $$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{ub'} \\ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \\ V_{td} & V_{ts} & V_{tb} & V_{tb'} \\ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{pmatrix}$$ $$|V_{ud}| = 0.97425 \pm 0.00022 \quad |V_{us}| = 0.2252 \pm 0.0009 \quad |V_{ub}| = (3.89 \pm 0.44) \times 10^{-3}$$ $$|V_{cd}| = 0.230 \pm 0.011 \quad |V_{cs}| = 1.023 \pm 0.036 \quad |V_{cb}| = (40.6 \pm 1.3) \times 10^{-3}$$ $$|V_{td}| = (8.6 \pm 0.6) \times 10^{-3} \quad |V_{ts}| = (38.7 \pm 2.1) \times 10^{-3} \quad |V_{tb}| = 0.88 \pm 0.07$$ [PDG '10] Mixings between ordinary generation and 4th generation are constrained by unitarity of CKM matrix and meson decays e.g., $$|V_{ub'}| < 0.06, |V_{cb'}| < 0.027, |V_{tb'}| < 0.31$$ @ 3σ [Alok,Dighe,London '11] # So, one usually assumes that 4th generation decays to 3rd generation - 4th generation top: $t' \rightarrow bW$ - 4th generation bottom: $b' \to tW \quad (m_{b'} > m_t + m_W)$ Otherwise, bottom' decays to Z at 1-loop process, $b' \to bZ$ However, the region $m_{b'} < m_t + m_W$ where this process dominates in decay mode is already excluded by [Hung,Sher '08] based on [CDF '07] # 4th generation quark mass bound ### Bottom' $$m_{t'} > 311 \text{ GeV}$$ $$m_{b'} > 338 \text{ GeV}$$ ### **MNS** matrix [Buras, Duling, Feldmann, Heidsieck, Promberger '10] $$\longrightarrow |U_{e4}U_{\mu4}| < 10^{-4}$$